Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Sema Öztürk Yıldırım, ${ }^{\text {a }}$ Mehmet Akkurt, ${ }^{\text {a* }}$ Ahmet Cetin, ${ }^{\text {b }}$ Ahmet Cansiz, ${ }^{\text {b }}$ Memet Sekerci ${ }^{\text {b }}$ and Canan Kazak ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\text {b }}$ Department of Chemistry, Faculty of Arts and Sciences, Fırat University, 23119 Elazığ, Turkey, and ${ }^{\mathbf{c}}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.031$
$w R$ factor $=0.076$
Data-to-parameter ratio $=16.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Phenyl-3-(pyridin-4-yl)-1H-1,2,4-triazole-5(4H)-thione

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S}$, the almost ideally planar triazole ring forms dihedral angles of 58.5 (1) and 36.9 (1) ${ }^{\circ}$ with the phenyl and pyridine planes, respectively. The planes of the phenyl and pyridyl substituents form a dihedral angle of $58.5(1)^{\circ}$ with each other. The crystal packing is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

Among the pharmacological profiles of 1,2,4-triazoles, their antimicrobial, anticonvulsant and antidepressant properties seem to be the best documented. Derivatives of 4,5 -disubstituted 1,2,4-triazole are known, synthesized by intramolecular cyclization of 1,4-disubstituted thiosemicarbazides (Zamani et al., 2003; Cansız et al., 2004). In addition, there are some studies on the electronic structures and thiol-thione tautomeric equilibria of heterocyclic thione derivatives (Aydoğan et al., 2002; Charistos et al., 1994). We present here the structure of a new 1,2,4-triazole derivative, namely 4-phenyl-3-(pyridin-4-yl)-1H-1,2,4-triazole-5(4H)-thione, (3) (Fig. 1).

Received 2 February 2005 Accepted 4 February 2005 Online 12 February 2005

The $\mathrm{C} 1=\mathrm{S} 1$ bond length $[1.6619$ (14) \AA] compares with 1.6773 (19) \AA in 4-(4-chlorophenyl)-3-(furan-2-yl)-1H-1,2,4-triazole-5(4H)-thione (Öztürk et al., 2004a) and 1.668 (5) \AA in 4-amino-3-(1,2,3,4,5-pentahydroxypentyl)-1H-1,2,4-triazole$5(4 H)$-thione (Zhang et al., 2004). In the triazole ring, the $\mathrm{N} 2=\mathrm{C} 2$ bond [1.2974 (17) Å] shows double-bond character (Table 1). In the crystal structure, all bond lengths and angles are comparable with those observed in related structures (Öztürk et al., 2004a,b). The triazole ring is planar within $0.002 \AA$. Its plane forms dihedral angles of $58.5(1)$ and

Figure 1

View of (3), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
Packing diagram of the title compound, viewed down the b axis. Hydrogen bonds are shown as dashed lines.
$36.9(1)^{\circ}$ with the mean planes of the phenyl and pyridine rings, respectively. The dihedral angle between the leastsquares planes of the phenyl and pyridine rings happens to be identical with the triazole/phenyl dihedral angle [58.5 (1) ${ }^{\circ}$]. $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 4$ hydrogen bonds link molecules of (3) into infinite chains extending along the c axis of the unit cell (Fig. 2 and Table 2).

Experimental

For the synthesis of 2-isonicotinoyl- N-phenylhydrazinecarbothioamide (see scheme), (2), a mixture of isonicotinohydrazide [(1); $0.01 \mathrm{~mol}, 1.37 \mathrm{~g}$ and phenyl isothiocynate ($0.01 \mathrm{~mol}, 1.35 \mathrm{~g}, 1.196 \mathrm{ml}$) in absolute ethanol (100 ml) was refluxed for 8 h . The solid material obtained on cooling was filtered off, washed with diethy ether (250 ml), dried and crystallized from acetone (yield 85%; m.p. 467$469 \mathrm{~K})$. IR $\nu\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3425,3295(\mathrm{~N}-\mathrm{H}), 1666(\mathrm{C}=\mathrm{O}), 1264$ $(\mathrm{C}=\mathrm{S}) .{ }^{1} \mathrm{H}$ NMR $\delta: 8.90-7.10(m, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.87-9.91(d, 2 \mathrm{H}, \mathrm{NH})$, 10.80-10.91 ($s, 1 \mathrm{H}, \mathrm{NH}$), $13.95(s, 1 \mathrm{H}, \mathrm{SH}$ or NH exchanged; DMSOd_{6}).

For the synthesis of 4-phenyl-3-(pyridin-4-yl)-1H-1,2,4-triazole$5(4 H)$-thione, (3), a stirred mixture of (2) ($1 \mathrm{mmol}, 2.72 \mathrm{~g}$) and sodium hydroxide ($40 \mathrm{mg}, 1 \mathrm{mmol}$, as a $2 N$ solution) was refluxed for 6 h . After cooling, the solution was acidified to pH 4 with 5 M hydrochloric acid and the precipitate was filtered off. The precipitate was then crystallized from a mixture of ethanol-dioxane (yield 90%;
m.p. $570-571 \mathrm{~K})$. IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2678(\mathrm{SH}), 1614(\mathrm{C}=\mathrm{N}), 1535$, 1260, 1050, 950 ($\mathrm{N}-\mathrm{C}=\mathrm{S}$, amide I, II, III and IV bands); ${ }^{1} \mathrm{H}$ NMR δ : 8.56-7.20 ($m, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 13.95 ($s, 1 \mathrm{H}, \mathrm{SH}$ or NH).

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S}$
Mo $K \alpha$ radiation
$M_{r}=254.32$
Orthorhombic, Pbcn
$a=11.2958$ (6) \AA
$b=12.7480$ (8) \AA
$c=17.5607$ (8) \AA
$V=2528.7$ (2) \AA^{3}
$Z=8$
$D_{x}=1.336 \mathrm{Mg} \mathrm{m}^{-3}$
Cell parameters from 2731
reflections
$\theta=1.6-27.2^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, yellow
$0.50 \times 0.42 \times 0.15 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: by
integration (X-RED32;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.915, T_{\text {max }}=0.947$
23863 measured reflections
2731 independent reflections
1779 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.067$
$\theta_{\text {max }}=27.2^{\circ}$
$h=-14 \rightarrow 14$
$k=-16 \rightarrow 16$
$l=-22 \rightarrow 22$

Refinement

Refinement on F^{2}

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0422 P)^{2}\right]
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.076$
$S=0.90$
2731 reflections
164 parameters
H -atom parameters constrained

$$
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.16 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.16 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0087 (8)

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C1	$1.6619(14)$	$\mathrm{N} 3-\mathrm{C} 2$	$1.3785(17)$
N1-N2	$1.3700(15)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.4387(17)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.3379(18)$	$\mathrm{N} 4-\mathrm{C} 5$	$1.334(2)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.2974(17)$	$\mathrm{N} 4-\mathrm{C} 6$	$1.328(2)$
N3-C1	$1.3836(16)$		
N2-N1-C1	$114.12(10)$	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	$127.97(10)$
N1-N2-C2	$103.82(11)$	$\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 3$	$126.03(11)$
C1-N3-C2	$107.46(11)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 3$	$111.54(11)$
C1-N3-C8	$124.82(11)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$122.43(12)$
C2-N3-C8	$127.18(11)$	$\mathrm{N} 4-\mathrm{C} 5-\mathrm{C} 4$	$123.24(14)$
$\mathrm{C} 5-\mathrm{N} 4-\mathrm{C} 6$	$117.12(13)$	$\mathrm{N} 4-\mathrm{C} 6-\mathrm{C} 7$	$123.53(14)$
S1-C1-N3	$128.91(11)$	$\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 9$	$118.93(12)$
N1-C1-N3	$103.07(11)$	$\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 13$	$119.72(13)$
C1-N3-C8-C9	$-116.69(16)$	$\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 7$	$36.9(2)$
N2-C2-C3-C7	$-141.88(16)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 4^{\mathrm{i}}$	0.86	1.97	$2.8305(16)$	179

Symmetry code: (i) $x,-y, \frac{1}{2}+z$.
All H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$) and included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the carrier atom.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular

organic papers

graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayis University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F. 279 of the University Research Fund). The financial support of Firat University Research Fund (FUBAB) is gratefully acknowledged (project No. 798). AÇ is grateful to TUBITAK-BAYG for assistance with the synthesis of the title compound.

References

Aydoğan, F., Turgut, Z., Olcay, N. \& Erdem, S. S. (2002). Turk. J. Chem. 26, 159-169

Cansız, A., Koparır, M. \& Demirağ, A. (2004). Molecules, 9, 204-212.
Charistos, D. D., Vagenes, G. V., Tzavellas, L. C., Tsoleridis, C. A. \& Rodios, N. A. (1994). J. Heterocycl. Chem. 31, 1593-1598.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838
Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. \& Heinemann, F. W. (2004a). Acta Cryst. E60, o425-o427.

Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. \& Heinemann, F. W. (2004b). Acta Cryst. E60, o642-o644.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany
Zamani, K., Faghihi, K., Sangi, M. R. \& Zolgharnein, J. (2003). Turk. J. Chem. 27, 119-125.
Zhang, L.-X., Zhang, A.-J., Lei, X.-X., Zou, K.-H. \& Ng, S. W. (2004). Acta Cryst. E60, o613-o615.

